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We use polynomial truncations of the Fourier transform of the local measure to calculate the connected
g-point functions of Dyson’s hierarchical model in the broken symmetry phase. We show that accurate values
of the connected one-, two-, and three-point functions can be obtained at large volume and in a limited range
of constant external field coupled linearly to the field variable. We introduce a new method to obtain the correct
infinite volume and zero external field extrapolations. We extract the leading critical exponents and show that
they obey the scaling and hyperscaling relations with an accuracy ranging frofrtd.6x 10 3. We briefly
discuss how to improve the method of calculation.

PACS numbsgps): 11.10.Hi, 05.50+q, 11.15.Ha, 75.40.Cx

I. INTRODUCTION hierarchical model with estimated errors of the order of

10" 2. The result was confirmed by calculating the largest

Spontaneous symmetry breaking plays a fundamental roleigenvalue of the linearized RG about the accurately deter-

in our understanding of the mass generation mechanism ahined nontrivial fixed poin{8].

elementary particles. One of the simplest field theory models Thanks to the polynomial approximation, very accurate
where it is observed is scalar theory. Despite its simplicity information can be encoded in a very small set of numbers.
there exists no known analytical method which allows one tdn the symmetric phase, this approximation is numerically
elucidate quantitatively all the dynamical questions whichStable when the number of sites becomes arbitrarily large and
can be asked about scalar field theory in various dimensioné?€ high-temperature fixed point is reached. On the other
From a sample of the recent literature on scalar field theonf@nd, in the broken symmetry phase, numerical instabilities
one can see that the Monte Carlo method is a popular tool t8PP€ar after a certain number of iterations following the bi-

settle questions such as the existence of nonperturbati yrcation, and it is not p055|bl_e to completely get rid of th_e

states[1], large rescaling of the scalar condensfe or finite-size effects with the straightforward procedure used in

Goldston,e mode effecis] the symmetric phase. This issue was briefly discussed in Sec.
' Il E of Ref. [7].

The Monte Carlo method allows us to approach quantum In this paper, we analyze the numerical instabilities of the

ﬁe"?' theory prpblems for w.hic-h 'Fhere are no known r('Jliablelow-temperature phase in a quantitative way. We show that
series expansions. The main limitations of the method are thg qpite of these numerical instabilities, it is possible to take

size of the lattice which can be reached and the fact that th&dvantage of the iterations for which the low-temperature

errors usually decrease like M wheret is the CPU time  scajing is observed to obtain reliable extrapolations of the
used for the calculation. If, in the next decades, a bettemagnetization, first to infinite volume at nonzero external
knowledge of the fundamental laws of physics has to relyfield and then to zero external field. We then present a more
more and more on precision tests, one should complemeRractical method of extrapolation which we apply to calcu-
Monte Carlo methods with new computational tools whichlate the connectedj-point functions at zero momentum
emphasize numerical accuracy. Gg(0) forq=1, 2, and 3. Finally, we use these calculations
This motivated us to use “hierarchical approximations” to extract the leading critical exponents and we check the
as a starting point, since they allow an easier use of thﬁypersca"ng relations among these exponents.
renormalization groupRG) transformation. Examples of hi- The paper is organized as follows. In Sec. Il we show
erarchical approximations are Wilson’s approximate recurhow to construct recursively the generating function for the
sion formula[4] or the hierarchical modgb]. In the sym-  G¢(0) when a magnetic field is introduced. In Sec. III, we
metric phase, we have fourii] that polynomial truncations reyview the scaling and hyperscaling relations among the
of the Fourier transform of the local measure provide specgyitical exponents and explain how they should be under-
tacular numerical accuracy, namely, various types of errorgiood in the case of the hierarchical model. Hyperscdig
decrease like A", for some positive constart of order 1 usually refers to scaling relations involving the dimension
whent is measured in minutes of CPU time and€iB<1.  explicitly. Dyson’s hierarchical model has no intrinsic di-
In particular,t only grows as the logarithm of the number of mensionality but rather a continuous free parameter usually
sitesLP and the finite-size effects decay like 2 whenL  denoted byc introduced in Sec. Il, which controls the decay
(the linear sizg becomes larger than the correlation length.of the interactions among blocks of increasing sizes. This
This method of polynomial truncations was ugé@d to cal- parameter can be tuned in order to insure that a massless
culate the critical exponent in the symmetric phase for the field has scaling properties that can be compared with those
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of nearest-neighbor models D dimensions. In the past we cant figures with the limit obtained with the first method; in
have chosen the parametrizatios 21 ~2P, however, this is  other words within the estimated errors of the calculation.
not the only possible one. In Sec. Il C, we show that a morelhe second procedure is much more practical because it does
general parametrization af (which includesy), combined not require any overlap among the acceptable regions of
with linear arguments yields predictions that are identical tamagnetic field when the volume increases. The second
the conventional predictions obtained from scaling and hyimethod will be used to calculate the higher point functions.
perscaling. We want to emphasize that the main prediction of Proceeding this way, we calculate the conneaembint

the linear theory—that can baterpretedas a hyperscaling functions at zero momentu@g(O), forg=1, 2, and 3 and
relation—can be expressed in termscadnly and is given in  for various values of the inverse temperat@eThe results
general by Eq(3.15. For c=2%3 this general equation to- are reported in Sec. VI. The critical exponents are then esti-

gether with the accurate result of RET] implies mated by using a method discussed in R&f, where we
selected a region g8 for which the combined effects of the
Yq=1.2991403 ...X (59— 6)/4, (1.2 errors due to subleading corrections and the numerical

round-off could be minimized. Using linear fits within this
where y, is the leading exponent corresponding to the conlimited range ofg, we found exponents in agreement with
nectedg-point function. the prediction of hyperscaling given in E¢3.15 with an

We then proceed to verify the predictions of Efj.1) by ~ accuracy of 10° for the magnetization, % 10> for the

doing actual calculations at various values of the inverseusceptibility and 5 102 for the three-point function. As
temperature8 near criticality. This is a rather challenging far as the first two results are concerned, the accuracy com-
task because as one moves away from the unstable fixgehres well with the accuracy that can usually be reached with
point, in the low-temperature side, rapid oscillations appeaf series analysis or the Monte Carlo method. Nevertheless,
in the Fourier transform of the local measure and the polythere is room for improvement: one should be able to “factor
nomial approximation ultimately breaks down. This is theout” the rapid oscillations in the Fourier transform of the
cause of the numerical instabilities mentioned above. As #cal measure and treat them exactly. This is discussed
consequence, a relatively small number of iterations can beriefly in the conclusions.
performed with a reasonable accuracy in the low-temperature
phase. This is explained in Sec. IV where we also show that [l. INTRODUCTION OF A MAGNETIC FIELD
the number of numerically accurate iterations in the low- L. . . .
temperature phase scales like the logarithm of the degree of DYSon's hierarchical modl5,10] and its recursion for-
the polynomial. For the calculations discussed later in thdnula have been discussed at length in Sec. II of F&f.In

paper, we have used a polynomial truncation of order ooothe following, we extend these results to the case where the

With this choice, the number of iterations where an approxi-i€!ds are coupled to a constant magnetic field. As in Ff.

mate low-temperature scaling is observed is slightly largef€ total number of sites is denoted2: and we label the
than 10. Since for Dyson’s hierarchical model the number ofit€S Withnpa, indicesx, . ... x;, each index is 0 or 1,
sites is halved after each iteration, it means roughly speakingepresenting the choices of nested subboxes. The nonlocal
that in correlation length units we can only reach volumegpart of the actior(i.e., the “kinetic term”) of Dyson’s Hier-
which are 2°=10°. If we use theD =3 interpretation oic  archical model reads

=213 this means that the linear size, denotedLbywhich

can be reached safely are at most 10 times the correlation __k iy c\"
lengths. Sin= 2 &4
Despite this limitation, the magnetization reaches its infi- 5
nite volume limit with clearly identifiable. ~2? corrections v D S 4 2.2)
provided that the external magnetic field is not too large X Xnr1 \Xnoooe Xy Oty X | 0

(otherwise the polynomial approximation breaks dowen
not too small(otherwise a linear analysis applies and there isThe constant is a free parameter which describes the way
no spontaneous magnetizatiohe exact intermediate range the nonlocal interactions decay with the size of the blocks.
of the magnetic field for which the connectgepoint func-  We often use the parametrization

tions reach an infinite volume limit with the characteristic

L2 corrections is discussed in Sec. V. In this intermediate c=2"2P, (2.2
range, two methods of extrapolation can be used. The first is . . . .
the standard one which consists of extrapolating to infinitd" ord_er to approxmateD-mmensmnal models. This ques-
volume at fixed external field and then to zero external field.t!on will be discussed lateisee Eq.(3.19 for a generaliza-
On the other hand, within the intermediate range of magnetieon of Eq.(2.2]

field mentioned above, the magnetization at finite volumeI tAqonstantl edxtter?ﬁl ?oturldfé Ifjalll?k? “the n;agnetlc flelcti”d b
can be fitted very accurately with a straight line which pro- ater, IS coupied to the total ield. This can be represented by

vides an extrapolation to zero magnetic field. This extrapo-an additional term in the action

lation has no physical meaning but it also reaches an infinite
volume limit with L ™2 corrections when the volume in- Sy=—-H > brx, X)) - (2.3
creases. This limit coincides with an accuracy of six signifi- Mpag X1
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However, due to the linearity of the coupling, >+ factor- From a conceptual point of view, as well as from a prac-

izes into local pieces and this interaction can be absorbed itical one, it is easier to deal with the rescaled quarRitgk).

the local measure. The fielqﬂ(xn x,) is integrated over Near the fixed point of Eq(2.5), we have the approximate
me behavior

with a local measure
20\ o qn
Wo( . H) oW )&%, 2.4 (M) =T (4/c) " (2.9
In terms of the rescaled function, we can rewrite B9 as
whereW,( ¢) is the local measure at zero magnetic field. For ) 2 o .
simplicity, we use the convention that if the magnetic field ~Rolk*+i1H(4/c)™7] D (_'k)q<(M )y, (ClA) A2
does not appear explicitly in an expressjerg.,Wy(¢)] the Ru[iH (4/c)"?] q n’/nH '
guantity should be understood at zero magnetic field. The (2.10
constant of proportionality refers to the fact that we require ) i i
both Wy(,H) andW,(¢) to be normalized as probability The connected Green’s func_tlons can be obtained by taking
distributions. Since we are interested in universal propertiesh® logarithm of this generating function.
we will use a single local measure, namely the Ising mea-
sure,Wo(¢) = 8(4%—1). Numerical experiments in Rdf7] . ABOUT HYPERSCALING
show that the universal properties are very robust under
changes in the local measure. ) ] ) o
The recursion relation corresponding to the integration of The main numerical results obtained in this paper are the
the fields in boxes of size 2, keeping the sum of the twocalculations of the critical exponents corresponding to the
fields in each box constant is discussed in R6f.whenH  Singularity of the connected-point functions forq=1, 2,
=0. The main result is that after Fourier transforming the@nd 3. For definiteness we use the notation
local measure and rescaling of the conjugate variable by a c _
factor (c/4)Y? at each iteration, the recursion relation be- Go(0)(B=Be) ™,

comes for the leading singularities in the low-temperature phase.
We assume that the reader is familiar with the commonly
used notation$11] for the critical exponents. Far=1, we
havey,; = — B which should not be confused with the inverse

(2.5  temperature. After this subsection, we keep using the nota-
tion B for the inverse temperature. Fq=2, we havevy,

We fixed the normalization consta@, is such way that =7v’. If one assumes that the scaled magnetizabf{T

R,(0)=1. R,(k) has then a direct probabilistic interpreta- —T.)? is a function of the scaled magnetic field/(T

tion: it is the generating function of the average of the posi-—T.)* only, one obtains that

tive powers ofM,, the total fieldX ¢, inside blocks of side

2". In the following,( . . . ), denotes the average calculated Yq+1~ Yq= A, (3.2

without taking into account the interactions among boxes 0?

size larger than 2

The introduction of the magnetic field is a very simple
operation. The basic equation reads

A. General expectations

(3.9

1 &
Rny1(K)=Cpy1 exp( - EBW) [Ra(k(c/4) P72,

or any g. The exponeni\ is often called the gap exponent
and should not be confused with the exponent associated
with the subleading corrections to the scaling laws.

In general, there exists seven relations among the ten criti-
cal exponentsy, ', B, v, y', A, é,v, v/, and 7, Iin
which the dimension of the system does not enter explicitly.
These are the so-called scaling relati¢h&] which stimu-

This is due to the linearity of the coupling Ebwhich allows  |ated the development of the RG method. Their explicit form
us to split Eq.(2.3) into sum over boxes of any desired size. js

In Fourier transform, this implies that

Wi(,H) o= Wi( )e?. (2.6

a=a', (3.3
W, (k,H)oc W, (k+iH). (2.7 — (3.9
The normalization factor is fixed by the conditiWn(O,H) v=yv', (3.5
=1 which guarantees th&¥/,(¢,H) is a probability distri-
bution and thatV,,(k,H) generates the average values of the at2p+y=2, (3.6)
positive powers of the total field. More explicitly,
A=B+vy, (3.7
. W, (k+iH) <& (—ik)d _
W,(kH)=———= M)k A= B9, (3.8
n( ) Wn(iH) qgo q! <( n) >n,H
(2.8 y=(2— 7). (3.9
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Equation(3.7) can be seen as an obvious version of B(R) with
for g=1, but has also a nontrivial content summarizing Eq.

(3.2 for all the higherq. y=In(2/c)/In\. (3.1
In addition, there exists one relation where the dimension
enters explicitly, for instance, This relationship has been successfully te$&dn the sym-

metric phase fog=4 and 4¢= 257,
Dv=2—a. (3.10
Other relations may be obtained by combining E8,.10 C. About dimensionality
with the scaling relations. Proceeding this way, we obtain a We will now show that Eq(3.15 is compatible with the
relation of relevance for the rest of the discussion, namely general relation of Eq(3.12) provided that we relate to a
parameteD which can be interpreted as the dimension of a
_(D—-2+7) nearest-neighbor model approximated by the hierarchical
- 2(2—17p) v (3.1 model. We introduce a linear dimensiarsuch that the vol-
umeLP is proportional to the total number of site&. From
The relations involving the dimension explicitly are usually D
called hyperscaling relatiorf®]. A mechanism leading to a Loc2™, (3.19
possible violation of hyperscalinglangerous irrelevant vari- ) . .
ables is explained in Appendix D of Ref12]. If the eight ~We canin general relateandD by assuming a scaling of the
relations hold, we are left with only two independent expo-total field
nents, for instance and 7. 2 (D+2-7)
Combining the hyperscaling relatiqB.11) and the scal- (MEH el e (3.1
ing relations(3.4) and(3.7), we obtain
From comparison with Eq2.9) this would imply that
=y+(q—2)A=y[—-2D+q(D+2—7)]/(4—27).
Yo= ¥ H(A=2)A=9[ a( 1l 27?)’.12) (4)c)= 202D, (3.19

B. The hierarchical model (HT case Substituti_ng in E_q(_:%._la, we reob_tai_n the ggne_ral E($.1_2)._
Since in the infinite volume limit the kinetic term is in-

In the case of the hierarchical model, the exponegisf  yariant under a RG transformation, we have chosen in the
the high-temperaturéHT) phase(so forq ever can be es-  past to use Eq(3.19 with »=0. This is our conventional
timated by using the linearized RG transformation. Since thigjefinition of ¢ given in Eq.(2.2). This is the same as saying
subsection is the only part of this article where we will con-tnat when we are near the fixed point, the total field in a box
sider the high-temperature phase, we have not found it usefdlyntaining 2 sites scales with the number of sites in the
to introduce special notations foyy in this phase. When same way as a massless Gaussian field. This obviously im-
Bc— B is small, the linearized RG transformation can be useghjies that in the vicinity of a Gaussian fixed point the total
for approximatelyn® iterations, withn* defined by the rela- field scales exactly like a massless Gaussian fiel® idi-
tion mension. On the other hand, an interacting massless field

i will also scale like a free one, which is not a bad approxi-
|B= BN =1, (313 mation inD=3. This is an unavoidable feature which will

. . . . need to be corrected when one tries to improve the hierar-
where\ is the largest eigenvalue of the linearized RG trans-

. ) . . >"chical approximation.
formation. After the transient behavior has died off and until bp

R ) i We emphasize that thisterpretationhas no bearing on
nreaches the value’, we are near the flxed. point a'ﬁd'(k), the validity of the calculations performed. What matters in
does not change appreciably. Remembering that the field

Sur calculation is the value of & In the following, we have
rescaled by a factorc(4)'? at each iteratiofisee Eq(2.5)], g

. : , I used 4¢=2%3 which can be interpreted either Bs=3 and
ytve otbtaln the order of magnitude estlmateG@(O) aftern 7=0 or, for instance, aB=2.97 andy=0.02.
iterations:

G;(O)%Z_”*(Mc)q”*/z. (3.14 D. The low-temperature case

The extension of the argument for odd and even values of
For n larger tham*, the nonlinear effects become important. q in the broken symmetry phase is somehow nontrivial.
The actual value oGg(O) may still change by as much as Since we need to take the infinite volume limit before taking
100%, however the order of magnitude estimate of Eqthe limit of a zero magnetic field, we need some understand-
(3.14 remains valid. This transition has been studied in deing of the nonlinear behavior. Some aspects of the nonlinear
tail in Ref.[13] in a simplified version of the model. Elimi- behavior are discussed in Sec. V. In the following, we will
nating n* in terms of 3.,— B8, we obtain the value of the show numerically that Eq:3.15 holds in good approxima-

leading exponents tion in the broken symmetry phase forc4/2%2. With this
choice of 4¢ and the corresponding value gfcalculated in
¥q=¥[(a/2)In(4/c) —In2]/In(2/c), (3.195 Ref.[7], Eq. (3.15 implies Eq.(1.1) given in the introduc-
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tion. The verification of this relation fag=1, 2, and 3 is the quencies. For a given numerical value ®@fn iterations of
main numerical result discussed in the following chapters. this exact procedure requires one to stote’2 1 numerical
coefficients. The memory size thus scales liKe &hile the
IV. POLYNOMIAL TRUNCATIONS CPU time scales like If g differs from 8. by 10" one
) ) ) ) needs at least 80 iterations in order to eliminate the finite-
In the following we will exclusively consider the case of gjze effects. Such a calculation using the exact method can
an Ising measure be ruled out by practical considerations.
We will thus try to extend the approximate methods that
Ro(k)=cogk). 4.1 we have used suc);/cessfully in the sSr&metric ph@$ewhere
This restriction is motivated by accurate che¢k$ of uni-  the functionR,(k) was calculated using finite dimensional
versality based on calculations with other measures. GiveAPproximationg6] of degreel
that Ry can be expanded into a finite number of eigenfunc-
tions of exp—3B(4%9k?) ], one can, in principle, obtain

_ 2 4 2 ax
exact expressions for the neRt(k), for instance, Ro(k)=1+an K +an K™+ ... +ay,  Kkimx (4.3

1+ ef2cog ky/c)
1+ efc?

R.(k)= (4.2 After each iteration, nonzero coefficients of higher order
(anHJmax+l etc) are obtained, but not taken into account as
One can, in principle, repeat this procedure. At each iteraa part of the approximation in the next iteration. The recur-

tion, one obtains a superposition of cosines of various fresion formula for thea,, ., reads[6]

[2hd—myt2mt](c/4'[—(12p] ™

Imax
» ( S anan.
. p+qg=I

q
max

(4.9
[2h11](c/d)'[—(1/2) 8]’

> an.a
prgmr P

The method to identify3. has been discussed in detail in a7 (I may'- (4.5
Ref. [6] and consists of finding the bifurcation in the ratio

8n+11/8n. In the following, we simply call this quantity ;s neans that the stable fixed point is an effect of the

“the ratio.” If B<p., the ratio drops tcc/2 for n large o1y nomial truncations and has no counterpart in the original
enough. In this case, the numerical stability of the infinite,oqel.

termination of the renormalized quantities. > 8., the  |ow-temperature shoulder ends. A detailed study shows that

ratio “jumps” suddenly a few iterations after” is reached for n large enough, we have in good approximation
and stabilizes near the valwg corresponding to the low-

temperature scaling. This is seen from HG.8). Since - n/2

<Mﬁ)n grows like 4', as one expects in the low-temperature Ro(k)=cog Mc™k), “8
phase, and remembering that there is a rescaling/4fat . .
each iteration, the coefficient ¢f grows likec". This im- ¢ o=l =200
plies a ratio equal t@. In our calculationc=1.2592 . ... [ ® ] =80
Unfortunately, the number of iterations where the low-
temperature scaling is observed is rather small. Subse-
quently, the ratio drops back to 1. As we shall explain at
length, this is an effect of the polynomial truncation. The I ® o
length of the “shoulder” where the low-temperature scaling .

is observed increases if we incredggy. This situation is e
illustrated in Fig. 1. No matter how larde,,, is, for n large '
enough, the ratio eventually drops back to 1. This reflects the
existence of sstablefixed point for thetruncatedrecursion n

formula. The valuesy of a, at this fixed point for various FIG. 1. The low-temperature shoulder gt=8.+ 10! for
I max are shown in Fig. 2. We see clear evidence for a depen, . =200 (empty circle$ and| ,,,= 80 (filled circles as a function
dence of the form of | nax-

1.6
N

14
g
&

a‘m+1/an
1.2
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Using Eq.(4.8) and the value ot expressed in terms d@
ok according to Eq(3.19 with =0, we obtain
;;_ o Eoct~UO=2), (4.10
g% - In particular, for the value 4/~ 25 used hereafter, the errors
A @r decrease liké 1. Consequently, we should try to modify the
. method in such a way that the rapidly oscillating part of
eF R,(K) is treated without polynomial approximations. This
possibility is presently under investigation. One can never-

1.4 1.6 1.8 theless obtain results with an accuracy competing with exist-
Log,5(lag) ing methods by using the fir_litv_e _data on the _sh_ort shoulder in
order to extrapolate to the infinite volume limit result. This
FIG. 2. Value ofa/ for the “false” low-temperature fixed procedure is made possible by the rather regular way the
points for the Ising case in three dimensions ferl (circles, | renormalized quantities approach this limit.
=2 (filled starg, | =3 (empty stars
V. THE EXTRAPOLATION TO INFINITE VOLUME
where M is the magnetization density in the infinite volume
limit. If we assume thaR, (k) is exactly as in Eq(4.6), then
we can use the basic recursion formyR5) in order to There is no spontaneous magnetization at finite volume.
obtain the corresponding, . 1(k). Using 2Xcog(x)=1 This well-known statement can be understood directly from
+cos(X), we can reexpregR,(k(c/4)Y?)]? as a superpo- Eq.(2.10. As explained at the beginning of Sec. IV, at finite
sition of eigenfunctions of the one-dimensional Laplacian.n, R,(k) is simply a superposition of cosines with finite posi-
When the exponential of the Laplacian in Eg.5 acts on tive coefficients provided thag is real. However, if8 is
the nonconstant modes it becomes g@dp(?c""1/2). Inthe  complex, these coefficients have singularities. This comes
polynomial truncation of the recursion relation, this expo-from the normalization factor, needed when we impose the
nential is replaced by, ., terms of its Taylor expansion. conditionR,(0)=1, which has zeroes in the complex plane.
This approximation is valid if the argument of the exponen-The behavior of these zeroes has been studied in [R4f.
tial is much smaller thah,,,x. Consequently, we obtain that for n between 6 and 12. As the volume increases, these ze-
the polynomial truncation certainly breaks dowmiis larger  roes “pinch” the critical point. However, at finit@, there
thanny, such that are no zeroes on the real axis. In conclusion, at geahnd
finite n, R,(K) is an analytical function dft. For any givem,
np+1=[In(2/8)—In(M?)+In(lnal/Inc. (4.7 we can always take the magnetic fididsmall enough in
order to have

A. Preliminary remarks

If the estimate of Eq(3.14) extends to the low-temperature |H(4/c)"2|<1. (5.1)
phase, one realizes that the second term of @d?) is

roughly n* while the third term stands for the length of the |f we expressc in terms of the linear dimension using Egs.
peak and the shoulder. Plugging the approximate values 1(b 2) and(3.17 this translates into

for g and 0.7 forM (see Sec. ¥ we obtainn,=23 for

| max= 80 andn,= 27 forl ,,,=200. A quick glance at Fig. 1 |H|<L~(P+2)2 (5.2
shows that these estimates coincide with the first drastic
drops of the low-temperature shoulder. Given the analyticity ofR,(k), one can then use Eq.

One can, in principle, extend indefinitely the low- (2.10 in the linear approximation. In this limit,
temperature shoulder by increasing,,. However, the CPU
time t necessary fon iterations of a quadratic map in dimen- (Mp)n=—2a,.H(4/c)", (5.3

sion | ax grows like o . ) . )
and the magnetization vanishes linearly with the magnetic

field.

On the other hand, for any nonzek, no matter how
small its absolute value is, one can always findnalarge
As we will show in Sec. V, the finite-size effects GE(O) enough to havdH(4lc)n/2|>l_ The nonlinear effects are
are of the order¢/2)"s wherens is the number of points on  then important and Ed5.3) does not apply. In addition, it is
the shoulder. This behavior has been demonsti@gith the  assumedand will be verified explicitly laterthat when such
hi_gh-t_empel’ature phase and we will see later that |t also a[hn n is reached, the Va'ue Of tl"@g(o) Stab“izes at an ex-
plies in the low-temperature phase. From the previous disponential rate. One can thefirst extrapolate at infinite vol-
cussionng=Inl ,/Inc. This implies that the finite-size ef- yme for a given magnetic field, atdenreduce the magnetic

toen (| pax) - (4.9

fects¢& are of the order field in order to extrapolate a sequence of infinite volume
limits with decreasing magnetic field, towards zero magnetic
Ex (| an) (A INC, (4.9 field. Again, this procedure requires some knowledge about
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n Al
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FIG. 4. The magnetization versus the magnetic fieldrferl5
FIG. 3. logo(M) versus log(H) atn=17 for =B, +10"". (lower set of point to 21 (upper set of points on the left of the
figure) for | ;.= 200 andB= 8.+ 10 1.
the way the second limit is reached. In the case considered

here (one scalar componéntthe limit is reached by linear — (n/2)log o 4lc) <logyo H)

extrapolation. In systems with more components, the . !

Nambu-Goldstone modes create a square-root behghidr <l0g;o(I may) — (N/2)10g,o(4/C).
M(T(T¢,H)0)=M(T,0")+CHY2 (5.4) (5.6

which has been observed f@(4) models using Monte In the log scale of Fig. 3, the width of region Il is at most
Carlo simulationg3]. We now discuss the application of the 109:0(Ima,) Which is approximately 2.3 in our sample calcu-

procedure outlined above in the simplest case. lation. Region II shifts by—(1/2)log,«(4/c), approximately
0.25 in our sample calculation, at each iteration. In addition,
B. Calculation of the magnetization the whole graph moves slightly up at each iteration in a way

. . ] ) _ .. which is better seen using a linear scale as in Fig. 4. As one

In this subsection we discuss the calculation of the infinite,5 see, the regions Il of seven successive iterations do not
volume limit of the magnetization. The magnetization den-oyerlap. Consequently 1.5 is a more realistic estimate than
sity at finite volume is defined as the previously quoted bound 2.3 for the average width of

(M,) region Il
My (H)= Y 7n/nH (5.5) The fewer iterations we use to extrapolate to infinite vol-
2" ume, the broader the range of the magnetic field can be. We

. o o have compared five sets of four iterations well on the low-
We call it “the magnetization” when no confusion is pos- temperature shoulder starting from the &&t, 18, 19, 2Dup
sible. For definiteness, we have chosen a special VAlue to the set(21, 22, 23, 23t From our experience in the sym-

=pB.+10" " and calculated the magnetization by plugging metric phasé6] we have assumed that the finite-size effects
numerical values oH in Eq. (2.10 and expanding to first could be parametrized as

order ink. The results are shown in Fig. 3 for=17 and
Imax=200. As one can see, we have three different regions. My= M., —AXB". (5.7)
The first ong(l) is the region where the linear approximation
described above applies. For the example considered he
the linearization condition|H(4/c)"?<1 translates into
log,o(H) < —4.3. This is consistent with the fact that the lin- ~
ear behavior is observed belows. The third partlll), is the 10g1o( M +1 = Mp) =A+nXlogyo(B), (5.8
region where the polynomial approximation breaks down. _ 5
Given the approximate form given in E¢4.6), this should whereA=log;o(A) +10g;o(1—B). The valueA and logyB)
certainly happen when|H(4/c)"?~Ia.. This means can be obtained from linear fits. For four successive itera-
log;o(H)~—2.0 in our example. On the figure, one sees thations, this will give us three-point fits for the infinite volume
for log;o(H)~ — 2.4, the magnetization drops suddenly in- limit at a fixed value oH#0. In all fits performed, we found
stead of reaching its asymptotic value at latdenamely B=0.63, which is compatible with thec(2)" decay of the
M=1. Finally, the intermediate regiaill) is the one which finite size effects found in the symmetric ph48¢ In terms
contains the information we are interested in. of the linear dimensioih. introduced in Eq(3.17), this cor-

As advertised, we will first take the infinite volume limit responds to finite-size effects decaying like?. If the pa-
of the magnetization at nonzero magnetic field and then exrametrization of Eq(5.7) was exact, the value oM ,+A
trapolate to zero magnetic field. We need to understand how B" would be independent af and equal toM.. . In prac-
the second region shown in Fig. 3 changes witlrrom the tice, variations slightly smaller than 16 are observed. We
above discussion, region Il is roughly given by the range othave thus taken an average over these values in order to
magnetic field estimate M., at fixed H. The results for the first set are

his relation implies that
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FIG. 5. M., extrapolated from the data for=17, 18, 19, and log,o(H)

20, versus the magnetic field foy, =200 andB= B,+10" 1.
FIG. 6. The successive ratios of the susceptibility B« B,
shown in Fig. 5 for various values &f. The linear behavior +1071.
allows an easy extrapolation t6=0.
We have repeated this procedure for the four other sets afetic field for which this scaling is observed is analogous to
successive values defined previously and obtainedHhe ‘“region II” introduced in the previous subsection, and we

=0 extrapolations: will use the same terminology here. The ratios of the suscep-
Set MH=0 tibility at successiven are shown for various values &f in
Fig. 6.
1 0.7105296 One sees that the range where the desired scaling is ob-
2 0.7105349 served shrinks when increases. For each successive itera-
3 0.7105376 tion, the ratio of susceptibility has an “upside-down U”
4 0.7105380 shape. The values &f for which the ratio starts dropping on
5 0.7105382 the left are equally spaced and can be determined by linear-
ization as before. On the other side of the upside-down U,
Averaging over these five values, we obtain dropping values of the ratio signal the breakdown of the
H_o . polynomial truncation. This occurs at smaller valuesHof
M "=0.710536-3X10"". (5.9 than for the magnetization, making the region Il smaller. A

theoretical estimate of the lower value dffor which this

It may be argued that the values coming from sets involving, o, ens requires a more refined parametrization than the one
larger values oh are better estimates because the flnlte-SIZ%iven in Eq.(4.6). In order to get a controllable extrapola-

effects are smaller for those sets. tion, we need at least four successive valueg,pfto get at

We have repeated this type of calculation with sets of iVt three-point fits for the logarithm of the differences
successive iterations and a correspondingly narrower ran is is unfortunately impossible: the region 11 of three suc-

of magpetic field and found results compatible with the esti-.o5give upside-down U have no overlap as one can see from
mate given by Eq(5.9). Fig. 6. Similar results are obtained by plotting the suscepti-
bility versus the magnetic field as shown in Fig. 7. One sees
C. The susceptibility that the regions Il(where the susceptibility can approxi-
We now consider the calculation of the connected suscephately be fitted by a line which extrapolates to a nonzero
tibility (two-point function. By using the previous notation, Value at zeraH) do not overlap for four consecutive itera-

we can express it as tions.
(M2n—(M)2y (bi—2xby) T '
xn(H) = e = —— ., (510 -
>
where 3
H n/2 w0 _ e
R”[kT'H(A'/C)Z ]:E b KI. (5.11 E en=15 =n=17
Rn[lH(4/C)n ] gq=0 a *n=16 +n=18
0 1 . I . I A
= 2x107*  4x10™* 6x107* 8x107*

The dependence ad of the b,, is implicit.

In order to extrapolate the susceptibility to infiniteone
has to determine the range of the magnetic field for which
the scaling(M,)2,,— (M7 ),=2" holds. When this is the  FIG. 7. The susceptibilityy, versus the magnetic fielt at
case, the ratiov,, 41/ xn=1. The range of values of the mag- differentn for 8= B,+107 1.

Magnetic Field
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T ' T " T " ] n. So in general, it allows us to use more iterations to get
p=p,+107" ] better quality extrapolations. The fact that the values of the
] magnetization obtained with the two methods coincide with
five significant digits is a strong indication that the two pro-
cedures are equivalent. For the susceptibility and higher
point functions, we do not have an independent check, since
the alternate method is the only one available. However, we
were able to make consistency checks such as the fact that
the slope of the straight line used for the zero magnetic field
: . . extrapolation of theg-point function coincides with they
16 18 =0 22 + 1-point function.
n We can repeat the same steps for the three-point function.
The three-point function is given by

-3

Lax=200

Logo[ 1 —4y]
-3.5
T

-4

FIG. 8. logo(MH 12— M=% versusn for | ,,,=200 andB
_ -1

et 10 . M3—3M;M,+2M3  6by—6b;b,— 25
37 - 1

D. An alternate method 2" 2"
In the previous discussion, we have observed a linear be- (5.13
.havior.for. region I of.the magnetization and.the suscepti.bil—where the dependence o¢h is implicit. As shown in Ref.
ity. This linear behavior can be us.e_d to obtain extrapo_latl_on 16], GS<0 for H=0. Due to the additional subtraction, the
to nonzero values of these quantities at zero magnetic f'e@ange where the proper low-temperature scaling is observed
These values have no physical interpretation. We denot% smaller than for the suceptibility. It is not possible to re-

H—0 fadi~ati PR
them byM n . the arrow indicating that the quantity is a peat the same steps for the four-point function which is given
mathematical extrapolation ambt “the spontaneous mag-

netization at finite volume.” They reach an asymptotic value

at an exponential suppressed rate whémncreases, just as in GS= M4—3M§—4M1M3+ 12M§— 6M?,  (5.14
Eq. (5.7). This is illustrated in Fig. 8. Using a linear fit to fix

the unknown parametessandB in Eq. (5.7), and averaging g4 involves one more subtraction.

the M H~9+AB" overn, we obtain

M 2:0=0.710537ﬁ2>< 1078, (5.12 VI. ESTIMATION OF THE EXPONENTS

We have used the method described in the previous sec-
which is consistent with the result obtained with the standardion to calculate the value of the connectggoint functions
method. at value of 8 approachingB. from above with equal spac-

Roughly speaking, the lines of region Il move parallel toings on a logarithmic scale. For reference, the numerical val-
each other when increases and it is approximately equiva- ues are given in Table I.
lent to first extrapolate to zetd, using the linear behavior in The estimated errors on the values quoted above are of
region Il, and then to infinite rather than the contrary. If the order 1 in the last digit for the first lines of the table and
two limits coincide, the second method has a definite practislowly increase when one moves down the table. For the last
cal advantage: all we need is a small part of region Il forlines, the effects of the round-off errors become sizable. Oth-
eachn, no matter if it overlaps or not with region Il for other erwise, the errors are mainly due to the extrapolation proce-

TABLE I. Connected functions for varioys.

—log;o(B—Bc) Gi(0) G3(0) G3(0)
1 0.710537 5.1449 —452
2 0.372929 147.75 —4.83x 10°
3 0.181173 3270.0 —4.42x10°
4 8.6463% 102 67534 —3.82x 104
5 4.1047% 102 1.3628x 1¢° —3.23x 10
6 1.94518 102 2.7274< 10 —2.72x10"
7 9.2118% 1073 5.4411x 10° —2.28x 107°
8 4.36138&% 1073 1.0842x 10'° —1.91x 107
9 2.0647% 1073 2.1596< 10" —1.60x 10°°
10 9.77434 1074 4.3010x 10'? —1.34x 107°
11 4.62716¢10°4 8.5641x 103 —1.11x 10%
12 2.1908% 104 1.7042< 10° —9.40x 10**
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y1=—0.3247752X10 5,

ol
®l

o b ¥,=1.29918-10%, (6.3

gt

S

32 ¥3=2.928+102.

The errors due to the subleading corrections and the round-
off errors are approximately of the same order in this region
of temperaturd7]. The errors due to the subleading correc-
—Log,o(8—8.) tions are larger for larger values p8.— 8|, while the nu-
merical errors are larger for smaller values| gf— 8| . We
have estimated the errors due to the subleading corrections
by performing the same calculation between d@nd 10°°.

dure. _\_Ne hav_e_ checked that the nur_nerical vaIL_Jes of thq“he errors bars quoted above reflect the differences with the
guantities at finiteH have reached their asymptotic values exponents obtained in this second region

(well within the accuracy of the final resuls a function of

lmax-

The results are displayed in Fig. 9 in a log-log plot. The VIl. CONCLUSIONS
departure from the linear behavior is not visible on this fig-  one sees clearly that our best estimates of the critical
ure. In the symmetric phase, we kngw] that the relative  eyponentdEq. (6.3)] are fully compatible with the predic-
strength of the subleading corrections is approximatelfions of hyperscalindEq. (6.2)]. The differences between
—0.57(8.— B)** Itis likely that a similar behavior should the predicted and calculated values are %lGor y;, 4
be present in the low-temperature phase. CpnseqL_JenFIy, taks 1075 for y, and 5x 1072 for 5. They fall well within the
ing into account the data on the left part of Fig. 9 will distort egtimated errors. Since hyperscaling is a reasonable expecta-
the value of the exponents. On the other hand, getting Qo this also shows that the nonstandard extrapolation
close to criticality generates large numerical errors. Using &yethod that we have used is reliable. As fangandy, are
linear fit of the data starting with the fifth point and ending ¢oncered, the errors bars are smaller than what can usually
with the tenth point, we obtain the value of the exponents e reached using a series analysis or Monte Carlo simulation.
Our result fory, is also compatible with the result 0.325
y,=—0.3247, obtained in Ref[17] for the hierarchical mode{for o/d
=2/3 with their notationsusing the integral formula.
One could, in principle, improve the accuracy of these
v,=1.2997, (6. calculations by increasing the size of the polynomial trunca-
tion. However, the efficiency of this proceduferrors de-
creasing like the inverse of the CPU tijris not compatible
¥3=2.9237. with our long term objectivegerrors decreasing exponen-
tially). The main obstruction to keep using the polynomial

This can be compared with the predictions from scaling andruncation is that the generating functiéy(k) starts oscil-

hyperscaling given by Eq1.1) and amount numerically to lating rapidly in the low-temperature phase making the ap-
proximation of the exponential of the Laplacian by a sum

inaccurate. It is thus important to obtain an approximate pa-
y1=—0.324785, rametrization ofR,(k) in terms of eigenfunctions of the La-
placian. A step in this direction is made by the parametriza-
tion of Eq. (4.6). This approximate analytical form needs to
be improved in order to include the connected two-point and
higher point functions in terms of an exponential function.
y3=2.923066. This possibility is_ presently under investigation.
Can the techniques developed here be extended to models
with nearest-neighbor models? One can certainly Fourier
Better estimates can be obtained by using the method devetansform the local measure and replace the fields appearing
oped in Ref[7], where it was found that the combined ef- in the nonlocal interactions by the appropriate derivative.
fects of the two types of errors are minimized for #®  However, for nearest-neighbor interations, the recursion for-
<|B.— B|<10"°. This allowed estimates of (in the sym- mula does not factorize nicely into identical versions of Eq.
metric phasg with errors of order X 10 ° (compared to (2.5) as for the hierarchical model. The way this complicated
more accurate estimades)sing 10 values between 1®and  recursion formula can be approximately disentangled into
10 % with equal spacing on a logarithmic scale, we obtain,onerecursion formula similar to Eq2.5) is explained in the
here, original papers of Wilsorj4]. However, there are relevant

5 10

FIG. 9. log«(GJ(0)) versus logy(B8—B.) for g=1, 2, and 3.

y,=1.2991407, (6.2
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corrections to this approximation since the critical exponent@xponents of nearest-neighbor models? This is a question
differ by amounts which are small but significantly larger that we plan to be able to answer in the near future.

than the errors bars. In order to take into account these cor-
rections, recursion formulas involving more sites will need to ACKNOWLEDGMENTS
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