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Hyperscaling in the broken symmetry phase of Dyson’s hierarchical model
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We use polynomial truncations of the Fourier transform of the local measure to calculate the connected
q-point functions of Dyson’s hierarchical model in the broken symmetry phase. We show that accurate values
of the connected one-, two-, and three-point functions can be obtained at large volume and in a limited range
of constant external field coupled linearly to the field variable. We introduce a new method to obtain the correct
infinite volume and zero external field extrapolations. We extract the leading critical exponents and show that
they obey the scaling and hyperscaling relations with an accuracy ranging from 1025 to 531023. We briefly
discuss how to improve the method of calculation.

PACS number~s!: 11.10.Hi, 05.50.1q, 11.15.Ha, 75.40.Cx
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I. INTRODUCTION

Spontaneous symmetry breaking plays a fundamental
in our understanding of the mass generation mechanism
elementary particles. One of the simplest field theory mod
where it is observed is scalar theory. Despite its simplic
there exists no known analytical method which allows one
elucidate quantitatively all the dynamical questions wh
can be asked about scalar field theory in various dimensi
From a sample of the recent literature on scalar field the
one can see that the Monte Carlo method is a popular too
settle questions such as the existence of nonperturba
states@1#, large rescaling of the scalar condensate@2# or
Goldstone mode effects@3#.

The Monte Carlo method allows us to approach quant
field theory problems for which there are no known reliab
series expansions. The main limitations of the method are
size of the lattice which can be reached and the fact that
errors usually decrease liket21/2, where t is the CPU time
used for the calculation. If, in the next decades, a be
knowledge of the fundamental laws of physics has to r
more and more on precision tests, one should complem
Monte Carlo methods with new computational tools whi
emphasize numerical accuracy.

This motivated us to use ‘‘hierarchical approximation
as a starting point, since they allow an easier use of
renormalization group~RG! transformation. Examples of hi
erarchical approximations are Wilson’s approximate rec
sion formula@4# or the hierarchical model@5#. In the sym-
metric phase, we have found@6# that polynomial truncations
of the Fourier transform of the local measure provide sp
tacular numerical accuracy, namely, various types of er
decrease likee2Atu, for some positive constantA of order 1
when t is measured in minutes of CPU time and 0.5<u<1.
In particular,t only grows as the logarithm of the number
sitesLD and the finite-size effects decay likeL22 when L
~the linear size! becomes larger than the correlation leng
This method of polynomial truncations was used@7# to cal-
culate the critical exponentg in the symmetric phase for th
0556-2821/2000/61~11!/114509~11!/$15.00 61 1145
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hierarchical model with estimated errors of the order
10212. The result was confirmed by calculating the large
eigenvalue of the linearized RG about the accurately de
mined nontrivial fixed point@8#.

Thanks to the polynomial approximation, very accura
information can be encoded in a very small set of numbe
In the symmetric phase, this approximation is numerica
stable when the number of sites becomes arbitrarily large
the high-temperature fixed point is reached. On the ot
hand, in the broken symmetry phase, numerical instabili
appear after a certain number of iterations following the
furcation, and it is not possible to completely get rid of t
finite-size effects with the straightforward procedure used
the symmetric phase. This issue was briefly discussed in
III E of Ref. @7#.

In this paper, we analyze the numerical instabilities of t
low-temperature phase in a quantitative way. We show t
in spite of these numerical instabilities, it is possible to ta
advantage of the iterations for which the low-temperat
scaling is observed to obtain reliable extrapolations of
magnetization, first to infinite volume at nonzero extern
field and then to zero external field. We then present a m
practical method of extrapolation which we apply to calc
late the connectedq-point functions at zero momentum
Gq

c(0) for q51, 2, and 3. Finally, we use these calculatio
to extract the leading critical exponents and we check
hyperscaling relations among these exponents.

The paper is organized as follows. In Sec. II we sh
how to construct recursively the generating function for t
Gq

c(0) when a magnetic field is introduced. In Sec. III, w
review the scaling and hyperscaling relations among
critical exponents and explain how they should be und
stood in the case of the hierarchical model. Hyperscaling@9#
usually refers to scaling relations involving the dimensi
explicitly. Dyson’s hierarchical model has no intrinsic d
mensionality but rather a continuous free parameter usu
denoted byc introduced in Sec. II, which controls the deca
of the interactions among blocks of increasing sizes. T
parameter can be tuned in order to insure that a mass
field has scaling properties that can be compared with th
©2000 The American Physical Society09-1
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of nearest-neighbor models inD dimensions. In the past w
have chosen the parametrizationc52122/D, however, this is
not the only possible one. In Sec. III C, we show that a m
general parametrization ofc ~which includesh), combined
with linear arguments yields predictions that are identica
the conventional predictions obtained from scaling and
perscaling. We want to emphasize that the main predictio
the linear theory—that can beinterpretedas a hyperscaling
relation—can be expressed in terms ofc only and is given in
general by Eq.~3.15!. For c521/3, this general equation to
gether with the accurate result of Ref.@7# implies

gq51.29914073 . . .3~5q26!/4, ~1.1!

wheregq is the leading exponent corresponding to the c
nectedq-point function.

We then proceed to verify the predictions of Eq.~1.1! by
doing actual calculations at various values of the inve
temperatureb near criticality. This is a rather challengin
task because as one moves away from the unstable
point, in the low-temperature side, rapid oscillations app
in the Fourier transform of the local measure and the po
nomial approximation ultimately breaks down. This is t
cause of the numerical instabilities mentioned above. A
consequence, a relatively small number of iterations can
performed with a reasonable accuracy in the low-tempera
phase. This is explained in Sec. IV where we also show
the number of numerically accurate iterations in the lo
temperature phase scales like the logarithm of the degre
the polynomial. For the calculations discussed later in
paper, we have used a polynomial truncation of order 2
With this choice, the number of iterations where an appro
mate low-temperature scaling is observed is slightly lar
than 10. Since for Dyson’s hierarchical model the numbe
sites is halved after each iteration, it means roughly spea
that in correlation length units we can only reach volum
which are 210.103. If we use theD53 interpretation ofc
521/3, this means that the linear size, denoted byL, which
can be reached safely are at most 10 times the correla
lengths.

Despite this limitation, the magnetization reaches its in
nite volume limit with clearly identifiableL22 corrections
provided that the external magnetic field is not too lar
~otherwise the polynomial approximation breaks down! or
not too small~otherwise a linear analysis applies and there
no spontaneous magnetization!. The exact intermediate rang
of the magnetic field for which the connectedq-point func-
tions reach an infinite volume limit with the characteris
L22 corrections is discussed in Sec. V. In this intermedi
range, two methods of extrapolation can be used. The fir
the standard one which consists of extrapolating to infin
volume at fixed external field and then to zero external fie
On the other hand, within the intermediate range of magn
field mentioned above, the magnetization at finite volu
can be fitted very accurately with a straight line which p
vides an extrapolation to zero magnetic field. This extra
lation has no physical meaning but it also reaches an infi
volume limit with L22 corrections when the volume in
creases. This limit coincides with an accuracy of six sign
11450
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cant figures with the limit obtained with the first method;
other words within the estimated errors of the calculatio
The second procedure is much more practical because it
not require any overlap among the acceptable regions
magnetic field when the volume increases. The sec
method will be used to calculate the higher point function

Proceeding this way, we calculate the connectedq-point
functions at zero momentumGq

c(0), for q51, 2, and 3 and
for various values of the inverse temperatureb. The results
are reported in Sec. VI. The critical exponents are then e
mated by using a method discussed in Ref.@7#, where we
selected a region ofb for which the combined effects of th
errors due to subleading corrections and the numer
round-off could be minimized. Using linear fits within thi
limited range ofb, we found exponents in agreement wi
the prediction of hyperscaling given in Eq.~3.15! with an
accuracy of 1025 for the magnetization, 431025 for the
susceptibility and 531023 for the three-point function. As
far as the first two results are concerned, the accuracy c
pares well with the accuracy that can usually be reached w
a series analysis or the Monte Carlo method. Neverthel
there is room for improvement: one should be able to ‘‘fac
out’’ the rapid oscillations in the Fourier transform of th
local measure and treat them exactly. This is discus
briefly in the conclusions.

II. INTRODUCTION OF A MAGNETIC FIELD

Dyson’s hierarchical model@5,10# and its recursion for-
mula have been discussed at length in Sec. II of Ref.@6#. In
the following, we extend these results to the case where
fields are coupled to a constant magnetic field. As in Ref.@6#,
the total number of sites is denoted 2nmax and we label the
sites withnmax indicesxnmax

, . . . ,x1, each index is 0 or 1,
representing the choices of nested subboxes. The non
part of the action~i.e., the ‘‘kinetic term’’! of Dyson’s Hier-
archical model reads

Skin52
b

2 (
n51

nmax S c

4D n

3 (
xnmax

, . . . ,xn11
S (

xn , . . . ,x1

f (xnmax
, . . . ,x1)D 2

. ~2.1!

The constantc is a free parameter which describes the w
the nonlocal interactions decay with the size of the bloc
We often use the parametrization

c52122/D, ~2.2!

in order to approximateD-dimensional models. This ques
tion will be discussed later@see Eq.~3.19! for a generaliza-
tion of Eq. ~2.2!#.

A constant external sourceH, called ‘‘the magnetic field’’
later, is coupled to the total field. This can be represented
an additional term in the action

SH52H (
xnmax

, . . . ,x1

f (xnmax
, . . . ,x1) . ~2.3!
9-2
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However, due to the linearity of the coupling,e2SH factor-
izes into local pieces and this interaction can be absorbe
the local measure. The fieldf (xnmax

, . . . ,x1) is integrated over

with a local measure

W0~f,H !}W0~f!eHf, ~2.4!

whereW0(f) is the local measure at zero magnetic field. F
simplicity, we use the convention that if the magnetic fie
does not appear explicitly in an expression@e.g.,W0(f)] the
quantity should be understood at zero magnetic field. T
constant of proportionality refers to the fact that we requ
both W0(f,H) and W0(f) to be normalized as probabilit
distributions. Since we are interested in universal propert
we will use a single local measure, namely the Ising m
sure,W0(f)5d(f221). Numerical experiments in Ref.@7#
show that the universal properties are very robust un
changes in the local measure.

The recursion relation corresponding to the integration
the fields in boxes of size 2, keeping the sum of the t
fields in each box constant is discussed in Ref.@6# whenH
50. The main result is that after Fourier transforming t
local measure and rescaling of the conjugate variable b
factor (c/4)1/2 at each iteration, the recursion relation b
comes

Rn11~k!5Cn11 expS 2
1

2
b

]2

]k2D @Rn„k~c/4!1/2
…#2.

~2.5!

We fixed the normalization constantCn is such way that
Rn(0)51. Rn(k) has then a direct probabilistic interpret
tion: it is the generating function of the average of the po
tive powers ofMn , the total field(fx inside blocks of side
2n. In the following, ^ . . . &n denotes the average calculat
without taking into account the interactions among boxes
size larger than 2n.

The introduction of the magnetic field is a very simp
operation. The basic equation reads

Wn~f,H !}Wn~f!eHf. ~2.6!

This is due to the linearity of the coupling toH which allows
us to split Eq.~2.3! into sum over boxes of any desired siz
In Fourier transform, this implies that

Ŵn~k,H !}Ŵn~k1 iH !. ~2.7!

The normalization factor is fixed by the conditionŴn(0,H)
51 which guarantees thatWn(f,H) is a probability distri-
bution and thatŴn(k,H) generates the average values of t
positive powers of the total field. More explicitly,

Ŵn~k,H !5
Ŵn~k1 iH !

Ŵn~ iH !
5 (

q50

`
~2 ik !q

q!
^~Mn!q&n,H .

~2.8!
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From a conceptual point of view, as well as from a pra
tical one, it is easier to deal with the rescaled quantityRn(k).
Near the fixed point of Eq.~2.5!, we have the approximate
behavior

^~Mn!2q&n}~4/c!qn. ~2.9!

In terms of the rescaled function, we can rewrite Eq.~2.9! as

Rn@k1 iH ~4/c!n/2#

Rn@ iH ~4/c!n/2#
5 (

q50

`
~2 ik !q

q!
^~Mn!q&n,H~c/4!qn/2.

~2.10!

The connected Green’s functions can be obtained by tak
the logarithm of this generating function.

III. ABOUT HYPERSCALING

A. General expectations

The main numerical results obtained in this paper are
calculations of the critical exponents corresponding to
singularity of the connectedq-point functions forq51, 2,
and 3. For definiteness we use the notation

Gq
c~0!}~b2bc!

2gq, ~3.1!

for the leading singularities in the low-temperature pha
We assume that the reader is familiar with the commo
used notations@11# for the critical exponents. Forq51, we
haveg152b which should not be confused with the inver
temperature. After this subsection, we keep using the n
tion b for the inverse temperature. Forq52, we haveg2
5g8. If one assumes that the scaled magnetizationM /(T
2Tc)

b is a function of the scaled magnetic fieldH/(T
2Tc)

D only, one obtains that

gq112gq5D, ~3.2!

for any q. The exponentD is often called the gap exponen
and should not be confused with the exponent associ
with the subleading corrections to the scaling laws.

In general, there exists seven relations among the ten c
cal exponentsa, a8, b, g, g8, D, d,n, n8, and h, in
which the dimension of the system does not enter explici
These are the so-called scaling relations@11# which stimu-
lated the development of the RG method. Their explicit fo
is

a5a8, ~3.3!

g5g8, ~3.4!

n5n8, ~3.5!

a12b1g52, ~3.6!

D5b1g, ~3.7!

D5bd, ~3.8!

g5~22h!n. ~3.9!
9-3
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Equation~3.7! can be seen as an obvious version of Eq.~3.2!
for q51, but has also a nontrivial content summarizing E
~3.2! for all the higherq.

In addition, there exists one relation where the dimens
enters explicitly, for instance,

Dn522a. ~3.10!

Other relations may be obtained by combining Eq.~3.10!
with the scaling relations. Proceeding this way, we obtai
relation of relevance for the rest of the discussion, name

b5
~D221h!

2~22h!
g. ~3.11!

The relations involving the dimension explicitly are usua
called hyperscaling relations@9#. A mechanism leading to a
possible violation of hyperscaling~dangerous irrelevant vari
ables! is explained in Appendix D of Ref.@12#. If the eight
relations hold, we are left with only two independent exp
nents, for instanceg andh.

Combining the hyperscaling relation~3.11! and the scal-
ing relations~3.4! and ~3.7!, we obtain

gq5g1~q22!D5g@22D1q~D122h!#/~422h!.
~3.12!

B. The hierarchical model „HT case…

In the case of the hierarchical model, the exponentsgq of
the high-temperature~HT! phase~so for q even! can be es-
timated by using the linearized RG transformation. Since
subsection is the only part of this article where we will co
sider the high-temperature phase, we have not found it us
to introduce special notations forgq in this phase. When
bc2b is small, the linearized RG transformation can be us
for approximatelyn! iterations, withn! defined by the rela-
tion

ub2bculn!
51, ~3.13!

wherel is the largest eigenvalue of the linearized RG tra
formation. After the transient behavior has died off and un
n reaches the valuen!, we are near the fixed point andRn(k)
does not change appreciably. Remembering that the fie
rescaled by a factor (c/4)1/2 at each iteration@see Eq.~2.5!#,
we obtain the order of magnitude estimate forGq

c(0) aftern!

iterations:

Gq
c~0!'22n!

~4/c!qn!/2. ~3.14!

For n larger thann!, the nonlinear effects become importan
The actual value ofGq

c(0) may still change by as much a
100%, however the order of magnitude estimate of
~3.14! remains valid. This transition has been studied in
tail in Ref. @13# in a simplified version of the model. Elimi
nating n! in terms of bc2b, we obtain the value of the
leading exponents

gq5g@~q/2!ln~4/c!2 ln2#/ ln~2/c!, ~3.15!
11450
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g5 ln~2/c!/ lnl. ~3.16!

This relationship has been successfully tested@6# in the sym-
metric phase forq54 and 4/c525/3.

C. About dimensionality

We will now show that Eq.~3.15! is compatible with the
general relation of Eq.~3.12! provided that we relatec to a
parameterD which can be interpreted as the dimension o
nearest-neighbor model approximated by the hierarch
model. We introduce a linear dimensionL such that the vol-
umeLD is proportional to the total number of sites 2n. From

L}2n/D, ~3.17!

we can in general relatec andD by assuming a scaling of th
total field

^Mn
2q&n}L (D122h)q. ~3.18!

From comparison with Eq.~2.9! this would imply that

~4/c!52(D122h)/D. ~3.19!

Substituting in Eq.~3.15!, we reobtain the general Eq.~3.12!.
Since in the infinite volume limit the kinetic term is in

variant under a RG transformation, we have chosen in
past to use Eq.~3.19! with h50. This is our conventiona
definition of c given in Eq.~2.2!. This is the same as sayin
that when we are near the fixed point, the total field in a b
containing 2n sites scales with the number of sites in t
same way as a massless Gaussian field. This obviously
plies that in the vicinity of a Gaussian fixed point the to
field scales exactly like a massless Gaussian field inD di-
mension. On the other hand, an interacting massless
will also scale like a free one, which is not a bad appro
mation in D53. This is an unavoidable feature which wi
need to be corrected when one tries to improve the hie
chical approximation.

We emphasize that thisinterpretationhas no bearing on
the validity of the calculations performed. What matters
our calculation is the value of 4/c. In the following, we have
used 4/c525/3, which can be interpreted either asD53 and
h50 or, for instance, asD52.97 andh50.02.

D. The low-temperature case

The extension of the argument for odd and even value
q in the broken symmetry phase is somehow nontriv
Since we need to take the infinite volume limit before taki
the limit of a zero magnetic field, we need some understa
ing of the nonlinear behavior. Some aspects of the nonlin
behavior are discussed in Sec. V. In the following, we w
show numerically that Eq.~3.15! holds in good approxima-
tion in the broken symmetry phase for 4/c525/3. With this
choice of 4/c and the corresponding value ofg calculated in
Ref. @7#, Eq. ~3.15! implies Eq.~1.1! given in the introduc-
9-4



s.

of

ve
nc

ra
fre

ite-
can

at

al

er
as
ur-

HYPERSCALING IN THE BROKEN SYMMETRY PHASE . . . PHYSICAL REVIEW D 61 114509
tion. The verification of this relation forq51, 2, and 3 is the
main numerical result discussed in the following chapter

IV. POLYNOMIAL TRUNCATIONS

In the following we will exclusively consider the case
an Ising measure

R0~k!5cos~k!. ~4.1!

This restriction is motivated by accurate checks@7# of uni-
versality based on calculations with other measures. Gi
that R0 can be expanded into a finite number of eigenfu
tions of exp@2 1

2 b(]2/]k2)#, one can, in principle, obtain
exact expressions for the nextRn(k), for instance,

R1~k!5
11ebc/2cos~kAc!

11ebc/2 . ~4.2!

One can, in principle, repeat this procedure. At each ite
tion, one obtains a superposition of cosines of various
in
io
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s
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quencies. For a given numerical value ofc, n iterations of
this exact procedure requires one to store 2n2111 numerical
coefficients. The memory size thus scales like 2n, while the
CPU time scales like 4n. If b differs from bc by 10210, one
needs at least 80 iterations in order to eliminate the fin
size effects. Such a calculation using the exact method
be ruled out by practical considerations.

We will thus try to extend the approximate methods th
we have used successfully in the symmetric phase@7#, where
the functionRn(k) was calculated using finite dimension
approximations@6# of degreel max:

Rn~k!511an,1k
21an,2k

41 . . . 1an,l max
k2l max. ~4.3!

After each iteration, nonzero coefficients of higher ord
(an11,l max11

etc.! are obtained, but not taken into account
a part of the approximation in the next iteration. The rec
sion formula for thean,m reads@6#
an11,m5

(
l 5m

l max S (
p1q5 l

an,pan,qD @~2l !!/ ~ l 2m!! ~2m!! #~c/4! l@2~1/2!b# l 2m

(
l 50

l max S (
p1q5 l

an,pan,qD @~2l !!/ l ! #~c/4! l@2~1/2!b# l

. ~4.4!
the
nal

that
The method to identifybc has been discussed in detail
Ref. @6# and consists of finding the bifurcation in the rat
an11,1/an,1 . In the following, we simply call this quantity
‘‘the ratio.’’ If b,bc , the ratio drops toc/2 for n large
enough. In this case, the numerical stability of the infin
volume limit is excellent and allows extremely accurate d
termination of the renormalized quantities. Ifb.bc , the
ratio ‘‘jumps’’ suddenly a few iterations aftern! is reached
and stabilizes near the valuec, corresponding to the low
temperature scaling. This is seen from Eq.~2.8!. Since
^Mn

2&n grows like 4n, as one expects in the low-temperatu
phase, and remembering that there is a rescaling ofc/4 at
each iteration, the coefficient ofk2 grows like cn. This im-
plies a ratio equal toc. In our calculation,c51.25992 . . . .
Unfortunately, the number of iterations where the lo
temperature scaling is observed is rather small. Sub
quently, the ratio drops back to 1. As we shall explain
length, this is an effect of the polynomial truncation. T
length of the ‘‘shoulder’’ where the low-temperature scali
is observed increases if we increasel max. This situation is
illustrated in Fig. 1. No matter how largel max is, for n large
enough, the ratio eventually drops back to 1. This reflects
existence of astablefixed point for thetruncatedrecursion
formula. The valuesal

! of al at this fixed point for various
l max are shown in Fig. 2. We see clear evidence for a dep
dence of the form
-

-
e-
t

e

n-

al
!}~ l max!

l . ~4.5!

This means that the stable fixed point is an effect of
polynomial truncations and has no counterpart in the origi
model.

It is possible to evaluate the value ofn for which the
low-temperature shoulder ends. A detailed study shows
for n large enough, we have in good approximation

Rn~k!.cos~Mcn/2k!, ~4.6!

FIG. 1. The low-temperature shoulder atb5bc11021 for
l max5200 ~empty circles! andl max580 ~filled circles! as a function
of l max.
9-5
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whereM is the magnetization density in the infinite volum
limit. If we assume thatRn(k) is exactly as in Eq.~4.6!, then
we can use the basic recursion formula~2.5! in order to
obtain the correspondingRn11(k). Using 23cos2(x)51
1cos(2x), we can reexpress@Rn„k(c/4)1/2

…#2 as a superpo-
sition of eigenfunctions of the one-dimensional Laplacia
When the exponential of the Laplacian in Eq.~2.5! acts on
the nonconstant modes it becomes exp(bM 2cn11/2). In the
polynomial truncation of the recursion relation, this exp
nential is replaced byl max terms of its Taylor expansion
This approximation is valid if the argument of the expone
tial is much smaller thanl max. Consequently, we obtain tha
the polynomial truncation certainly breaks down ifn is larger
thannb such that

nb11.@ ln~2/b!2 ln~M 2!1 ln~ l max!#/ lnc. ~4.7!

If the estimate of Eq.~3.14! extends to the low-temperatur
phase, one realizes that the second term of Eq.~4.7! is
roughly n! while the third term stands for the length of th
peak and the shoulder. Plugging the approximate values
for b and 0.7 forM ~see Sec. V!, we obtainnb523 for
l max580 andnb527 for l max5200. A quick glance at Fig. 1
shows that these estimates coincide with the first dra
drops of the low-temperature shoulder.

One can, in principle, extend indefinitely the low
temperature shoulder by increasingl max. However, the CPU
time t necessary forn iterations of a quadratic map in dimen
sion l max grows like

t}n~ l max!
2. ~4.8!

As we will show in Sec. V, the finite-size effects onGq
c(0)

are of the order (c/2)ns wherens is the number of points on
the shoulder. This behavior has been demonstrated@6# in the
high-temperature phase and we will see later that it also
plies in the low-temperature phase. From the previous
cussionns' lnl max/ lnc. This implies that the finite-size ef
fectsE are of the order

E}~ l max!
ln(c/2)/ln c. ~4.9!

FIG. 2. Value of al
! for the ‘‘false’’ low-temperature fixed

points for the Ising case in three dimensions forl 51 ~circles!, l
52 ~filled stars!, l 53 ~empty stars!.
11450
.

-

-

.1

ic

p-
s-

Using Eq.~4.8! and the value ofc expressed in terms ofD
according to Eq.~3.19! with h50, we obtain

E}t21/(D22). ~4.10!

In particular, for the value 4/c525/3 used hereafter, the error
decrease liket21. Consequently, we should try to modify th
method in such a way that the rapidly oscillating part
Rn(k) is treated without polynomial approximations. Th
possibility is presently under investigation. One can nev
theless obtain results with an accuracy competing with ex
ing methods by using the finite data on the short shoulde
order to extrapolate to the infinite volume limit result. Th
procedure is made possible by the rather regular way
renormalized quantities approach this limit.

V. THE EXTRAPOLATION TO INFINITE VOLUME

A. Preliminary remarks

There is no spontaneous magnetization at finite volum
This well-known statement can be understood directly fr
Eq. ~2.10!. As explained at the beginning of Sec. IV, at fini
n, Rn(k) is simply a superposition of cosines with finite pos
tive coefficients provided thatb is real. However, ifb is
complex, these coefficients have singularities. This com
from the normalization factor, needed when we impose
conditionRn(0)51, which has zeroes in the complex plan
The behavior of these zeroes has been studied in Ref.@14#
for n between 6 and 12. As the volume increases, these
roes ‘‘pinch’’ the critical point. However, at finiten, there
are no zeroes on the real axis. In conclusion, at realb and
finite n, Rn(k) is an analytical function ofk. For any givenn,
we can always take the magnetic fieldH small enough in
order to have

uH~4/c!n/2u!1. ~5.1!

If we expressc in terms of the linear dimension using Eq
~2.2! and ~3.17! this translates into

uHu!L2(D12)/2. ~5.2!

Given the analyticity ofRn(k), one can then use Eq
~2.10! in the linear approximation. In this limit,

^Mn&n.22an,1H~4/c!n, ~5.3!

and the magnetization vanishes linearly with the magn
field.

On the other hand, for any nonzeroH, no matter how
small its absolute value is, one can always find ann large
enough to haveuH(4/c)n/2u@1. The nonlinear effects are
then important and Eq.~5.3! does not apply. In addition, it is
assumed~and will be verified explicitly later! that when such
an n is reached, the value of theGq

c(0) stabilizes at an ex-
ponential rate. One can then,first extrapolate at infinite vol-
ume for a given magnetic field, andthenreduce the magnetic
field in order to extrapolate a sequence of infinite volum
limits with decreasing magnetic field, towards zero magne
field. Again, this procedure requires some knowledge ab
9-6
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the way the second limit is reached. In the case conside
here ~one scalar component!, the limit is reached by linea
extrapolation. In systems with more components,
Nambu-Goldstone modes create a square-root behavior@15#

M ~T^Tc ,H&0!5M ~T,01!1CH1/2, ~5.4!

which has been observed forO(4) models using Monte
Carlo simulations@3#. We now discuss the application of th
procedure outlined above in the simplest case.

B. Calculation of the magnetization

In this subsection we discuss the calculation of the infin
volume limit of the magnetization. The magnetization de
sity at finite volume is defined as

Mn~H !5
^Mn&n,H

2n
. ~5.5!

We call it ‘‘the magnetization’’ when no confusion is po
sible. For definiteness, we have chosen a special valub
5bc11021 and calculated the magnetization by pluggi
numerical values ofH in Eq. ~2.10! and expanding to firs
order in k. The results are shown in Fig. 3 forn517 and
l max5200. As one can see, we have three different regio
The first one~I! is the region where the linear approximatio
described above applies. For the example considered h
the linearization conditionuH(4/c)n/2u!1 translates into
log10(H)!24.3. This is consistent with the fact that the li
ear behavior is observed below25. The third part~III !, is the
region where the polynomial approximation breaks dow
Given the approximate form given in Eq.~4.6!, this should
certainly happen whenuH(4/c)n/2u' l max. This means
log10(H)'22.0 in our example. On the figure, one sees t
for log10(H)'22.4, the magnetization drops suddenly i
stead of reaching its asymptotic value at largeH, namely
M51. Finally, the intermediate region~II ! is the one which
contains the information we are interested in.

As advertised, we will first take the infinite volume lim
of the magnetization at nonzero magnetic field and then
trapolate to zero magnetic field. We need to understand
the second region shown in Fig. 3 changes withn. From the
above discussion, region II is roughly given by the range
magnetic field

FIG. 3. log10(M) versus log10(H) at n517 for b5bc11021.
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2~n/2!log10~4/c!, log10~H !

, log10~ l max!2~n/2!log10~4/c!.

~5.6!

In the log scale of Fig. 3, the width of region II is at mo
log10( l max) which is approximately 2.3 in our sample calc
lation. Region II shifts by2(1/2)log10(4/c), approximately
0.25 in our sample calculation, at each iteration. In additi
the whole graph moves slightly up at each iteration in a w
which is better seen using a linear scale as in Fig. 4. As
can see, the regions II of seven successive iterations do
overlap. Consequently 1.5 is a more realistic estimate t
the previously quoted bound 2.3 for the average width
region II.

The fewer iterations we use to extrapolate to infinite v
ume, the broader the range of the magnetic field can be.
have compared five sets of four iterations well on the lo
temperature shoulder starting from the set~17, 18, 19, 20! up
to the set~21, 22, 23, 24!. From our experience in the sym
metric phase@6# we have assumed that the finite-size effe
could be parametrized as

Mn5M`2A3Bn. ~5.7!

This relation implies that

log10~Mn112Mn!5Ã1n3 log10~B!, ~5.8!

whereÃ5 log10(A)1 log10(12B). The valueÃ and log10(B)
can be obtained from linear fits. For four successive ite
tions, this will give us three-point fits for the infinite volum
limit at a fixed value ofHÞ0. In all fits performed, we found
B.0.63, which is compatible with the (c/2)n decay of the
finite size effects found in the symmetric phase@6#. In terms
of the linear dimensionL introduced in Eq.~3.17!, this cor-
responds to finite-size effects decaying likeL22. If the pa-
rametrization of Eq.~5.7! was exact, the value ofMn1A
3Bn would be independent ofn and equal toM` . In prac-
tice, variations slightly smaller than 1026 are observed. We
have thus taken an average over these values in orde
estimateM` at fixed H. The results for the first set ar

FIG. 4. The magnetization versus the magnetic field forn515
~lower set of point! to 21 ~upper set of points on the left of th
figure! for l max5200 andb5bc11021.
9-7
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shown in Fig. 5 for various values ofH. The linear behavior
allows an easy extrapolation toH50.

We have repeated this procedure for the four other set
successive values defined previously and obtained thH
50 extrapolations:
Set M `

H50

1 0.7105296
2 0.7105349
3 0.7105376
4 0.7105380
5 0.7105382

Averaging over these five values, we obtain

M `
H5050.7105367331026. ~5.9!

It may be argued that the values coming from sets involv
larger values ofn are better estimates because the finite-s
effects are smaller for those sets.

We have repeated this type of calculation with sets of fi
successive iterations and a correspondingly narrower ra
of magnetic field and found results compatible with the e
mate given by Eq.~5.9!.

C. The susceptibility

We now consider the calculation of the connected susc
tibility ~two-point function!. By using the previous notation
we can express it as

xn~H !5
^Mn

2&n,H2^Mn&n,H
2

2n
5

~b1
2223b2!

2n
, ~5.10!

where

Rn@k1 iH ~4/c!n/2#

Rn@ iH ~4/c!n/2#
5 (

q50

`

bqkq. ~5.11!

The dependence onH of the bn is implicit.
In order to extrapolate the susceptibility to infiniten, one

has to determine the range of the magnetic field for wh
the scaling^Mn&n,H

2 2^Mn,H
2 &n}2n holds. When this is the

case, the ratioxn11 /xn.1. The range of values of the mag

FIG. 5. M` extrapolated from the data forn517, 18, 19, and
20, versus the magnetic field forl max5200 andb5bc11021.
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netic field for which this scaling is observed is analogous
‘‘region II’’ introduced in the previous subsection, and w
will use the same terminology here. The ratios of the susc
tibility at successiven are shown for various values ofH in
Fig. 6.

One sees that the range where the desired scaling is
served shrinks whenn increases. For each successive ite
tion, the ratio of susceptibility has an ‘‘upside-down U
shape. The values ofH for which the ratio starts dropping o
the left are equally spaced and can be determined by lin
ization as before. On the other side of the upside-down
dropping values of the ratio signal the breakdown of t
polynomial truncation. This occurs at smaller values ofH
than for the magnetization, making the region II smaller.
theoretical estimate of the lower value ofH for which this
happens requires a more refined parametrization than the
given in Eq.~4.6!. In order to get a controllable extrapola
tion, we need at least four successive values ofxn ~to get at
least three-point fits for the logarithm of the difference!.
This is unfortunately impossible: the region II of three su
cessive upside-down U have no overlap as one can see
Fig. 6. Similar results are obtained by plotting the susce
bility versus the magnetic field as shown in Fig. 7. One s
that the regions II~where the susceptibility can approx
mately be fitted by a line which extrapolates to a nonz
value at zeroH) do not overlap for four consecutive itera
tions.

FIG. 6. The successive ratios of the susceptibility forb5bc

11021.

FIG. 7. The susceptibilityxn versus the magnetic fieldH at
different n for b5bc11021.
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D. An alternate method

In the previous discussion, we have observed a linear
havior for region II of the magnetization and the susceptib
ity. This linear behavior can be used to obtain extrapolati
to nonzero values of these quantities at zero magnetic fi
These values have no physical interpretation. We den
them byM n

H→0 , the arrow indicating that the quantity is
mathematical extrapolation andnot ‘‘the spontaneous mag
netization at finite volume.’’ They reach an asymptotic val
at an exponential suppressed rate whenn increases, just as in
Eq. ~5.7!. This is illustrated in Fig. 8. Using a linear fit to fi
the unknown parametersA andB in Eq. ~5.7!, and averaging
the M n

H→01ABn over n, we obtain

M `
H5050.7105377231026, ~5.12!

which is consistent with the result obtained with the stand
method.

Roughly speaking, the lines of region II move parallel
each other whenn increases and it is approximately equiv
lent to first extrapolate to zeroH, using the linear behavior in
region II, and then to infiniten rather than the contrary. If the
two limits coincide, the second method has a definite pra
cal advantage: all we need is a small part of region II
eachn, no matter if it overlaps or not with region II for othe

FIG. 8. log10(Mn11
H→02M n

H→0) versusn for l max5200 andb
5bc11021 .
11450
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n. So in general, it allows us to use more iterations to
better quality extrapolations. The fact that the values of
magnetization obtained with the two methods coincide w
five significant digits is a strong indication that the two pr
cedures are equivalent. For the susceptibility and hig
point functions, we do not have an independent check, s
the alternate method is the only one available. However,
were able to make consistency checks such as the fact
the slope of the straight line used for the zero magnetic fi
extrapolation of theq-point function coincides with theq
11-point function.

We can repeat the same steps for the three-point funct
The three-point function is given by

G3
c5

M323M1M212M1
3

2n
5

6b326b1b222b1
3

2n
,

~5.13!

where the dependence onH is implicit. As shown in Ref.
@16#, G3

c,0 for H<0. Due to the additional subtraction, th
range where the proper low-temperature scaling is obse
is smaller than for the suceptibility. It is not possible to r
peat the same steps for the four-point function which is giv
by

G4
c5M423M2

224M1M3112M1
226M1

4 , ~5.14!

and involves one more subtraction.

VI. ESTIMATION OF THE EXPONENTS

We have used the method described in the previous
tion to calculate the value of the connectedq-point functions
at value ofb approachingbc from above with equal spac
ings on a logarithmic scale. For reference, the numerical
ues are given in Table I.

The estimated errors on the values quoted above ar
order 1 in the last digit for the first lines of the table an
slowly increase when one moves down the table. For the
lines, the effects of the round-off errors become sizable. O
erwise, the errors are mainly due to the extrapolation pro
TABLE I. Connected functions for variousb.

2 log10(b2bc) G1
c(0) G2

c(0) G3
c(0)

1 0.710537 5.1449 2452
2 0.372929 147.75 24.833105

3 0.181173 3270.0 24.423108

4 8.6463931022 67534 23.8231011

5 4.1047931022 1.36283106 23.2331014

6 1.9451831022 2.72743107 22.7231017

7 9.2118331023 5.44113108 22.2831020

8 4.3613831023 1.084231010 21.9131023

9 2.0647331023 2.159631011 21.6031026

10 9.7743431024 4.301031012 21.3431029

11 4.6271631024 8.564131013 21.1131032

12 2.1908431024 1.704231015 29.4031034
9-9
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dure. We have checked that the numerical values of
quantities at finiteH have reached their asymptotic valu
~well within the accuracy of the final result! as a function of
l max.

The results are displayed in Fig. 9 in a log-log plot. T
departure from the linear behavior is not visible on this fi
ure. In the symmetric phase, we know@7# that the relative
strength of the subleading corrections is approximat
20.57(bc2b)0.43. It is likely that a similar behavior should
be present in the low-temperature phase. Consequently,
ing into account the data on the left part of Fig. 9 will disto
the value of the exponents. On the other hand, getting
close to criticality generates large numerical errors. Usin
linear fit of the data starting with the fifth point and endin
with the tenth point, we obtain the value of the exponent

g1520.3247,

g251.2997, ~6.1!

g352.9237.

This can be compared with the predictions from scaling a
hyperscaling given by Eq.~1.1! and amount numerically to

g1520.324785,

g251.2991407, ~6.2!

g352.923066.

Better estimates can be obtained by using the method de
oped in Ref.@7#, where it was found that the combined e
fects of the two types of errors are minimized for 10210

,ubc2bu,1029. This allowed estimates ofg ~in the sym-
metric phase! with errors of order 331025 ~compared to
more accurate estimates!. Using 10 values between 1029 and
10210 with equal spacing on a logarithmic scale, we obta
here,

FIG. 9. log10„Gc
q(0)… versus log10(b2bc) for q51, 2, and 3.
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g1520.3247756231025,

g251.2991861024, ~6.3!

g352.92861022.

The errors due to the subleading corrections and the rou
off errors are approximately of the same order in this reg
of temperature@7#. The errors due to the subleading corre
tions are larger for larger values ofubc2bu, while the nu-
merical errors are larger for smaller values ofubc2bu . We
have estimated the errors due to the subleading correct
by performing the same calculation between 1028 and 1029.
The errors bars quoted above reflect the differences with
exponents obtained in this second region.

VII. CONCLUSIONS

One sees clearly that our best estimates of the crit
exponents@Eq. ~6.3!# are fully compatible with the predic
tions of hyperscaling@Eq. ~6.2!#. The differences between
the predicted and calculated values are 1025 for g1 , 4
31025 for g2 and 531023 for g3. They fall well within the
estimated errors. Since hyperscaling is a reasonable exp
tion, this also shows that the nonstandard extrapola
method that we have used is reliable. As far asg1 andg2 are
concerned, the errors bars are smaller than what can us
be reached using a series analysis or Monte Carlo simula
Our result forg1 is also compatible with the result 0.32
obtained in Ref.@17# for the hierarchical model~for s/d
52/3 with their notations! using the integral formula.

One could, in principle, improve the accuracy of the
calculations by increasing the size of the polynomial trun
tion. However, the efficiency of this procedure~errors de-
creasing like the inverse of the CPU time! is not compatible
with our long term objectives~errors decreasing exponen
tially!. The main obstruction to keep using the polynom
truncation is that the generating functionRn(k) starts oscil-
lating rapidly in the low-temperature phase making the
proximation of the exponential of the Laplacian by a su
inaccurate. It is thus important to obtain an approximate
rametrization ofRn(k) in terms of eigenfunctions of the La
placian. A step in this direction is made by the parametri
tion of Eq. ~4.6!. This approximate analytical form needs
be improved in order to include the connected two-point a
higher point functions in terms of an exponential functio
This possibility is presently under investigation.

Can the techniques developed here be extended to mo
with nearest-neighbor models? One can certainly Fou
transform the local measure and replace the fields appea
in the nonlocal interactions by the appropriate derivati
However, for nearest-neighbor interations, the recursion
mula does not factorize nicely into identical versions of E
~2.5! as for the hierarchical model. The way this complicat
recursion formula can be approximately disentangled i
onerecursion formula similar to Eq.~2.5! is explained in the
original papers of Wilson@4#. However, there are relevan
9-10
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corrections to this approximation since the critical expone
differ by amounts which are small but significantly larg
than the errors bars. In order to take into account these
rections, recursion formulas involving more sites will need
be considered. For a finite number of sites, the algeb
methods associated with the polynomial truncations use
the present article can be extended. Can this procedure
to a convergent method to calculate accurately the crit
1
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11450
ts
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exponents of nearest-neighbor models? This is a ques
that we plan to be able to answer in the near future.
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